Convex and star-shaped sets associated with multivariate stable distributions, I: Moments and densities

نویسنده

  • Ilya S. Molchanov
چکیده

It is known that each symmetric stable distribution in Rd is related to a norm on Rd that makes Rd embeddable in Lp([0, 1]). In case of a multivariate Cauchy distribution the unit ball in this norm is the polar set to a convex set in Rd called a zonoid. This work interprets general stable laws using convex or star-shaped sets and exploits recent advances in convex geometry in order to come up with new probabilistic results for multivariate stable distributions. In particular, it provides expressions for moments of the Euclidean norm of a stable vector, mixed moments and various integrals of the density function. It is shown how to use geometric inequalities in order to bound important parameters of stable laws. Furthermore, covariation, regression and orthogonality concepts for stable laws acquire geometric interpretations. A similar collection of results is presented for one-sided stable laws.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex and star-shaped sets associated with stable distributions

It is known that each symmetric stable distribution in Rd is related to a norm on Rd that makes Rd embeddable in Lp([0, 1]). In case of a multivariate Cauchy distribution the unit ball in this norm corresponds is the polar set to a convex set in Rd called a zonoid. This work exploits most recent advances in convex geometry in order to come up with new probabilistic results for multivariate stab...

متن کامل

Meta densities and the shape of their sample clouds

This paper compares the shape of the level sets for two multivariate densities. The densities are positive and continuous, and have the same dependence structure. The density f is heavy-tailed. It decreases at the same rate – up to a positive constant – along all rays. The level sets {f > c} for c ↓ 0 have a limit shape, a bounded convex set. We transform each of the coordinates to obtain a new...

متن کامل

M-estimators as GMM for Stable Laws Discretizations

This paper is devoted to "Some Discrete Distributions Generated by Standard Stable Densities" (in short, Discrete Stable Densities). The large-sample properties of M-estimators as obtained by the "Generalized Method of Moments" (GMM) are discussed for such distributions. Some corollaries are proposed. Moreover, using the respective results we demonstrate the large-sample pro...

متن کامل

An overview of multivariate stable distributions

A d-dimensional α-stable random vector is determined by a spectral measure Γ (a finite Borel measure on Sd=unit sphere in R) and a shift vector μ ∈ R, e.g. Samorodnitsky and Taqqu (1994). The notation X ∼ Sα,d(Γ, μ) will be used to denote such a stable random vector. Until recently, there has been little understanding of what multivariate stable distributions look like, nor any methods for work...

متن کامل

An R package formodeling and simulating generalized spherical and related distributions

A flexible class of multivariate generalized spherical distributions with star-shaped level sets is developed. To work in dimension above two requires tools from computational geometry and multivariate numerical integration. An algorithm to approximately simulate from these star-shaped distributions is developed; it also works for simulating from more general tessellations. These techniques are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2009